RF/RMRS-99-312 Sampling and Analysis Plan for Ground Water Monitoring at the 903 Pad/Ryan's Pit VOC Plume **Final** July 1999 Revision 0 **ADMIN RECCRD** n-z p_00047 # Sampling and Analysis Plan for Groundwater Monitoring at the 903 Pad/Ryan's Pit VOC Plume # RF/RMRS-99-312 Revision 0 (Final) Effective Date July 13, 1999 This Sampling and Analysis Plan has been reviewed and approved by: S H Singer, RMRS Grandwater Program Manager Date G D DiGregorio, RMRS Quality Assurance Data Prepared by Rocky Mountain Remediation Services, L L C Rocky Flats Environmental Technology Site Golden, Colorado | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | 111 of 54 | # TABLE OF CONTENTS | TABI | LE OF C | CONTENTS | 111 | |------|---------|--|----------------------| | ACRO | ONYMS | 5 | vı | | LIST | OF API | PLICABLE STANDARD OPERATING PROCEDURES (SOPs) | VIII | | 1 0 | INTR | RODUCTION | 10 | | | 1 1 | Purpose | 10 | | | 1 2 | Background | 11 | | | | 1 2 1 Site Description 1 2 2 Previous Investigations | 11
12 | | | 1 3 | Hydrogeologic Setting | 13 | | | | 1 3 1 Geology 1 3 2 Groundwater Occurrence and Distribution 1 3 3 Type and Extent of Contamination 1 3 4 Conceptual Model | 13
14
17
21 | | 2 0 | SAM | PLING RATIONALE | 22 | | 3 0 | DAT | A QUALITY OBJECTIVES | 23 | | | 3 1 | State the Problem | 23 | | | 3 2 | Identify the Decision | 24 | | | 3 3 | Identify Inputs to the Decision | 24 | | | 3 4 | Define the Boundaries | 25 | | | 3 5 | Develop a Decision Rule | 25 | | | 3 6 | Specify Limits on Decision Errors | 26 | | | 3 7 | Optimize the Design for Obtaining Data | 28 | | 4 0 | SAM | PLING ACTIVITIES AND METHODOLOGY | 29 | | | 4 1 | Sampling Station Locations and Numbering 4 1 1 Monitoring Wells 4 1 2 Surface Water Stations | 29
29
29 | | Sampling and Analysis Plan
for Groundwater Monitoring at the | | | Document Number
Revision | RF/RMRS-99-312
Final | | |---|------|----------------|---|-------------------------|---------------------------| | | | s Pıt VOC | _ | Effective Date Page | July 13, 1999
iv of 54 | | | 4 2 | Well I | Design and Installation | | 30 | | | | 4 2 1
4 2 2 | Well Design Pre-Drilling Activities | | 30
31 | | | | 4 2 3 | <u> </u> | g | 31 | | | | | 4 2 3 1 Geoprobe® Borings
4 2 3 2 Monitoring Wells | | 31
32 | | | | 4 2 4 | Well Installation | | 32 | | | 4 3 | Well I | Development | | 32 | | | 4 4 | Sampl | e Designation | | 33 | | | 4 5 | Sampl | e Collection | | 33 | | | | 4 5 1
4 5 2 | | | 33
34 | | | | | 4 5 2 1 Flow Measurement Pa
4 5 2 2 Surface Water Sample | | 34
35 | | | 4 6 | Sampl | e Handling and Analysis | | 35 | | | 4 7 | Equip | ment Decontamination and Was | te Handling | 35 | | 5 0 | DAT | A MANA | AGEMENT | | 36 | | 6 0 | PRO | IECT OR | GANIZATION | | 37 | | 7 0 | HEA | LTH AN | D SAFETY PLAN | | 38 | | 8 0 | QUA | LITY AS | SSURANCE | | 38 | | 90 | SCH | EDULE | | | 41 | | 10.0 | REFI | ERENCE | S | | 41 | | 903 F | Pad/Ryan's Pit VOC Plume | Effective Date Page | July 13 1999
v of 54 | | | |-------|--|---|-------------------------|--|--| | | LIST OF TABLES | | | | | | 1-1 | Downgradient Groundwater Concentral | tions - 903 Pad/Ryan's Pit VOC Plume | 18 | | | | 1-2 | Plume Characterization Sampling - Vo | latile Organic Compounds in Groundwater | 21 | | | | 3-1 | ALF Surface Water Action Levels for t | he 903 Pad/Ryan's Pit Plume | | | | | | Contaminants-of-Concern | | 26 | | | | 4-1 | Monitoring Well Location Rationale | | 30 | | | | 4-2 | Analytical Requirements of Groundwat | er Samples | 36 | | | | 8-1 | QA/QC Sample Type, Frequency, and | Quantity | 39 | | | | 8-2 | PARCC Parameter Summary | | 40 | | | | | LIST | OF FIGURES | | | | | 1-1 | Location of 903 Pad and Ryan's Pit Son | urce Areas | | | | Composite Plume Map Showing 903 Pad/Ryan's Pit VOC Plume Extent Top of Bedrock Map in the 903 Pad/Ryan's Pit VOC Plume Area VOCs in Groundwater at the 903 Pad/Ryan's Pit Plume Area 903 Pad/Ryan's Pit Plume Monitoring Organization Chart Proposed Surface Water Sampling Area Location of Existing and Abandoned Monitoring Wells and Hillside Seeps Carbon Tetrachloride Trends in Selected 903 Pad/Ryan's Pit Plume Monitoring Wells Trichloroethene Trends in Selected 903 Pad/Ryan's Pit Plume Monitoring Wells Location of Proposed Monitoring Wells for the 903 Pad/Ryan's Pit VOC Plume Document Number Revision RF/RMRS-99-312 Sampling and Analysis Plan 1-2 1-3 1-4 1-5 1-6 1-7 4-1 4-2 6-1 for Groundwater Monitoring at the Sampling and Analysis Plan for Groundwater Monitoring at the 903 Pad/Ryan's Pit VOC Plume Document Number Revision Final Effective Date Page Vi of 54 #### **ACRONYMS** ALF Action Level Framework APO Analytical Project Office AR Administrative Records ASD Analytical Services Division CDPHE Colorado Department of Public Health and the Environment CERCLA Comprehensive Environmental Response, Compensation, and Liability Act DNAPL Dense Non-Aqueous Phase Liquid DOE U S Department of Energy DQO Data Quality Objective EDD Electronic Disc Deliverable EMSL Environmental Management Department EMSL Environmental Monitoring Support Laboratory EPA U S Environmental Protection Agency ER Environmental Restoration FID Flame Ionization Detector FIDLER Field Instrument for the Detection of Low Energy Radiation FO Field Operations GC/MS Gas Chromatography/Mass Spectrometry GPS Global Positioning System H₂SO₄ Sulfuric acid HCl Hydrochloric acid HNO₃ Nitric acid HRR Historical Release Report IA Industrial Area IHSS Individual Hazardous Substance Site IMP Integrated Monitoring Plan K-H Kaiser-Hill LHSU Lower Hydrostratigraphic Unit OU Operable Unit PARCC Precision, Accuracy, Representativeness, Completeness, and Comparability PCE Tetrachloroethene PCM Perchloromethane (carbon tetrachloride) PID Photoionization detector PPE Personal protective equipment QA/QC Quality Assurance/Quality Control QAPD Quality Assurance Program Description RCRA Resource Conservation and Recovery Act SWD Soil and Water Database RCRA Resource Conservation and Recovery Act RFCA Rocky Flats Cleanup Agreement RFETS Rocky Flats Environmental Technology Site RFFO Rocky Flats Field Office RFI/RI RCRA Facility Investigation/Remedial Investigation RMRS Rocky Mountain Remediation Services, L L C RPD Relative Percent Difference | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | • | Page | v11 of 54 | # ACRONYMS (Cont') | SAP | Sampling and Analysis Plan | |------|-------------------------------| | SID | South Interceptor Ditch | | SOPs | Standard Operating Procedures | | TAL | Target Analyte List | | TCE | Trichloroethene | | TCL | Target Compound List | | UHSU | Upper Hydrostratigraphic Unit | | VOC | Volatile Organic Compound | | | | Document Number Revision Effective Date Page RF/RMRS-99-312 Final July 13, 1999 viii of 54 # LIST OF APPLICABLE STANDARD OPERATING PROCEDURES (SOPs) | Identification Number | Procedure Title | |-----------------------|--| | RF/RMRS-98-200 | Evaluation of Data for Usability in Final Reports | | 2-S47-ER-ADM-05 15 | Use of Field Logbooks and Forms | | 5-21000-OPS-FO 15 | General Equipment Decontamination or successor (RMRS/OPS-PRO 127) | | 4-S02-ENV-OPS-FO 04 | Decontamination of Equipment at Decontamination Facilities or successor (RMRS/OPS-PRO 070) | | 4-H66- ER-OPS-FO 05 | Handling Purge and Development Water or successor (RMRS/OPS-PRO 128) | | 5-21000-OPS-FO 06 | Handling of Personal Protective Equipment | | RMRS/OPS-PRO 112 | Handling of Field Decontamination Water and Field Wash Water | | 1-PRO-079-WGI-001 | Waste Characterization, Generation, and Packaging | | RMRS/OPS-PRO 069 | Containing, Preserving, Handling and Shipping of Soil and Water Samples | | 5-21000-OPS-FO 15 | Photoionization Detectors and Flame Ionization Detectors | | 5-21000-OPS-FO 16 | Field Radiological Measurements | | RMRS/OPS-PRO 101 | Logging Alluvial and Bedrock Material | | RMRS/OPS-PRO 114 | Drilling and Sampling Using Hollow-Stem Auger and Rotary Drilling and Rock Coring Techniques | | RMRS/OPS-PRO 117 | Plugging and Abandonment of Boreholes | | 5-21000-OPS-GT 06 | Monitoring Wells and Piezometer Installation or successor (RMRS/OPS-PRO 118) | | RMRS/OPS-PRO 102 | Borehole Clearing | | 5-21000-OPS-GT 17 | Land Surveying or successor (RMRS/OPS-PRO 123) | | 4-S64-ER-OPS-GT 39 | Push Subsurface Soil Sampling
or successor (RMRS/OPS-PRO 124) | | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | ix of 54 | # LIST OF APPLICABLE STANDARD OPERATING PROCEDURES (SOPs) - Continued | RMRS/OPS-PRO 105 | Water Level Measurements in Wells and Piezometers | |---------------------|--| | RMRS/OPS-PRO 106 | Well Development | | RMRS/OPS-PRO 108 | Measurement of Groundwater Field Parameters | | RMRS/OPS-PRO 113 | Groundwater Sampling | | RMRS/OPS-PRO 081 | Surface
Water Sampling | | RMRS/OPS-PRO 093 | Discharge Measurement | | RMRS/OPS-PRO 094 | Field Measurements of Surface Water Field Parameters | | RM-06 02 | Records Identification, Generation and Transmittal | | RM-06 04 | Administrative Record Document Identification and Transmittal | | 4-K56-ENV-OPS-FO 08 | Monitoring and Containerizing Drilling Fluids and Cuttings or successor (RMRS/OPS-PRO 115) | | PADC-96-00003 | WSRIC for OU Operations, Version 6 0, Section 1 | #### 1.0 INTRODUCTION #### 1.1 Purpose This Sampling and Analysis Plan (SAP) provides for monitoring well installation, groundwater sampling, and surface water sampling activities at the 903 Pad/Ryan's Pit Plume project area at the Rocky Flats Environmental Technology Site (RFETS) as proposed under *Technical Memorandum*, *Monitoring of the 903 Pad/Ryan's Pit Plume* (RMRS, 1998a) Volatile organic contaminant groundwater plumes have migrated away from source areas at the 903 Pad and Ryan's Pit toward surface water streams. The SAP supports plume monitoring and characterization activities being conducted to evaluate monitored natural attenuation as an effective means of ensuring the protection of surface water quality. The objective of this SAP is to define specific data needs, sampling and analysis requirements, data handling procedures, and associated Quality Assurance/Quality Control (QA/QC) requirements for field activities planned under this project. All work will be performed in accordance with the RMRS Quality Assurance Program Description (QAPD) (RMRS, 1997a). Field activities planned under this work plan are limited to well installation, well development, and initial groundwater and surface water sampling activities. Additional groundwater sampling for longer-term monitoring will be accomplished by the Groundwater Monitoring Program as specified in the Integrated Monitoring Plan (IMP) This SAP incorporates information and data interpretations from previous investigations conducted at the project area as a basis for designing and implementing the proposed field activity Implementation of this project will be performed in accordance with applicable Federal, State, and local regulations, as well as DOE Orders, Rocky Flats Environmental Technology Site (RFETS) policies and procedures, and RMRS Operating Procedures | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Fınal | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 11 of 54 | # 1.2 Background # 1 2 1 Site Description The 903 Pad (IHSS 112), Ryan's Pit (IHSS 109), and associated groundwater plumes are located in the Buffer Zone Operable Unit (OU) near the southeast corner of the RFETS Industrial Area (IA) Figure 1-1 illustrates the location of the 903 Pad and Ryan's Pit in relationship to surrounding RFETS IA features and surface topography. The 903 Pad area was used to store drums that contained radioactively contaminated oils and VOCs from the summer of 1958 to January 1967. Approximately three-quarters of the drums contained plutonium-contaminated liquids while most of the remaining drums contained uranium-contaminated liquids. Of the drums containing plutonium, the liquid phase was primarily lathe coolant and carbon tetrachloride in varying proportions. Also stored in the drums were hydraulic oils, vacuum pump oil, trichloroethene, tetrachloroethene, silicone oils, and acetone still bottoms (DOE, 1992) Leaking drums were noted in 1964 during routine handling operations. The contents of the leaking drums were transferred to new drums, and the area was fenced to restrict access. When cleanup operations began in 1967, a total of 5,237 drums were at the drum storage site. Approximately 420 drums leaked to some degree. Of these, an estimated 50 drums had leaked their entire contents. The total amount of leaked material was estimated at around 5,000 gallons of contaminated liquid containing approximately 86 grams of plutonium. From 1968 through 1969, some of the radiologically contaminated material was removed, the surrounding area was regraded, and much of the area was covered with clean road base and an asphalt cap (DOE, 1992). Dense, non-aqueous phase liquids (DNAPLs) are suspected to exist underneath the 903 Pad, as high concentrations of VOCs are present in the groundwater (greater than 1% of the chemical's aqueous solubility). However, DNAPLs have not been detected in borings drilled at the Pad to date (45 percent complete) under the 903 Pad Site Characterization Project (RMRS, 1998b). Ryan's Pit is located approximately 150 feet south of the 903 Pad During the time of operation, it measured approximately 20 feet long, 10 feet wide, and 5 feet deep Ryan's Pit was used as a waste disposal site starting in 1969 and was later used for nonradioactive liquid chemical disposal starting in | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 12 of 54 | 1971 Use of the pit ceased in 1971 VOCs disposed of at this location included tetrachloroethene, trichloroethene, and carbon tetrachloride. In addition to VOC disposal, paint thinner and small quantities of construction-related chemicals may also have been placed in Ryan's Pit. According to historical data, only liquids were put in the pit. Their containers were either reused or disposed of in other areas (DOE, 1992). In 1995, source removal activities were completed at Ryan's Pit, including the removal of 180 cubic yards of contaminated soils (RMRS, 1997b). Historical releases of chlorinated hydrocarbon solvents or solvent-bearing oils to groundwater from these source areas have created two overlapping, aerially extensive plumes of VOC-contaminated groundwater known collectively as the 903 Pad/Ryan's Pit Plume. The 903 Pad/Ryan's Pit Plume is defined as the lobe of VOC contaminated groundwater that extends southward from these two source areas toward the South Interceptor Ditch (SID) and Woman Creek. The major type of VOC plume contaminants found in groundwater, including carbon tetrachloride, tetrachloroethene, and trichloroethene, correspond to the type of wastes materials reported to have been leaked or disposed of at the source areas. Figure 1-2 is a composite plume map that represents the most recent interpretation of groundwater VOC contaminant distribution from the 903 Pad and Ryan's Pit (updated from RMRS, 1998c, Plate 20) #### 1 2 2 Previous Investigations Subsurface investigations of the 903 Pad/Ryan's Pit plume were initiated as early as 1986 and have continued intermittantly to the present day. The most comprehensive assessment of hydrogeological conditions performed in this region of the Site is contained in the *Phase II OU 2 RCRA Facility Investigation/Remedial Investigation (RFI/RI)* (DOE, 1995). Relevant information on the general geology and hydrogeology of the area is also provided in EG&G (1995a, 1995b). More recently, RMRS collected site-specific hydrogeologic data in the proposed investigation area during a pre-remedial investigation intended to delineate the extent of groundwater contamination (IT, 1998a) During this investigation, twenty-six direct push borings were advanced and completed as wells in the area shown in Figure 1-1 Soil samples were collected and analyzed from each of the borings. Six of the wells yielded sufficient groundwater to collect samples for the analysis of VOCs | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan s Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 13 of 54 | These data were then analyzed to estimate the impacts of contaminated groundwater on surface water quality. The major conclusions of this analysis were as follows - The extent of the groundwater plume in close proximity to Woman Creek is limited, - Concentrations within the plume are relatively low, approaching Tier I groundwater levels in only one of five sample locations, and - The ability of saturated hydrogeologic units (colluvium and weathered claystone) within the area of the groundwater plume to transmit a significant flux of contaminants to Woman Creek is limited Based on this analysis, the Site, Environmental Protection Agency (EPA), and Colorado Department of Public Health and the Environment (CDPHE) agreed that collection and treatment of contaminated groundwater upgradient of the SID and Woman Creek was unnecessary, but that additional monitoring would be required. The results of this investigation are described in greater detail in Section 1 3 3 # 1.3 Hydrogeologic Setting The information contained in the following sections were derived from these investigations, recent plume boundary interpretations (RMRS, 1998c), historical groundwater data, and field observations made in December 1998 # 131 Geology RFETS is situated at the margin of a gently eastward sloping topographic and bedrock pediment surface mantled by unconsolidated Pleistocene Rocky Flats Alluvium and underlain mainly by claystones, siltstones, and sandstones of the Cretaceous Arapahoe and Laramie Formations (EG&G, 1995a) East of this margin, colluvium-covered hillslopes dominate the landscape, except along valley bottoms where valley-fill alluvial deposits occupy the major stream courses. The 903 Pad and Ryan's Pit source areas are situated on the Rocky Flats Alluvium and colluvium, respectively, although the groundwater VOC plumes associated with these sources involve all three types of surficial geological deposits, and to a lesser extent, weathered bedrock | Sampling and Analysis Plan | Document
Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 14 of 54 | The Rocky Flats Alluvium is comprised chiefly of poorly sorted, clayey gravels and sands with abundant cobble and boulder-sized material and discontinuous lenses of clay, silt, and sand. Hillside colluvial deposits are markedly finer-grained in texture, being comprised of clay, clayey gravels, and lesser amounts of sand and silt. These deposits were derived from geologic material exposed on the steep slopes and topographic highs, and were formed by slope wash, downslope creep, and landslide action. Valley-fill deposits were fluvially derived from upstream materials, and consist of clay, silt, and sand with lenses of gravel. These deposits occur along the drainage bottoms in and adjacent to stream beds, and are most common in the eastern portions of RFETS. The Arapahoe Formation is 0 to 50 feet thick at RFETS and consists mainly of a discontinuous, but mappable, fine- to medium-grained, moderately- to poorly- sorted sandstone unit that forms the uppermost sandstone of significant lateral extent. This sandstone unit is referred to as the Arapahoe Formation (or Number 1) sandstone (EG&G, 1995a) and is known to locally subcrop beneath the Rocky Flats Alluvium and colluvium in the 903 Pad, East Trench and other areas of the eastern Industrial Area It has been shown to be an important pathway for the lateral transport of contaminated groundwater to hillslopes in other areas of the Site (i.e., South Walnut Creek) The Laramie Formation conformably underlies the Arapahoe Formation and consists primarily of massive claystone and siltstone with discontinuous clayey sandstone units (EG&G, 1995a). Unlike the Arapahoe Formation sandstone, these sandstone units exhibit lithologic and hydrologic characteristics (i.e., high matrix clay content and low permeability) that are not indicative of contaminant pathways. These lenticular Laramie Formation sandstones are texturally distinct from the Arapahoe Formation sandstone by virtue of their high silt and clay content (EG&G, 1995a). #### 1 3 2 Groundwater Occurrence and Distribution All unconsolidated surficial and consolidated bedrock geologic deposits contain groundwater although groundwater conditions are known to vary widely across the Site as a function of topography, geologic unit, location, and season Shallow groundwater flow is generally confined to the hydrologically-active upper hydrostratigraphic unit (UHSU), which consists of Rocky Flats Alluvium, colluvium, and | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 15 of 54 | weathered bedrock materials Consequently, most RFETS groundwater plumes, including the 903 Pad/Ryan's Pit Plume, are limited to the UHSU Groundwater in the underlying lower hydrostratigraphic unit (LHSU) occurs in low permeability unweathered bedrock materials that are hydrologically poorly connected with the UHSU and is essentially uncontaminated Field activities planned for the 903 Pad/Ryan's Pit VOC Plume investigation will occur entirely within hillslope colluvial deposits and underlying weathered bedrock materials of the UHSU—Previous hydrogeological investigations of hillslope areas at RFETS, including former Operable Units 1 and 5 to the west (DOE, 1994, RMRS, 1996) and the recent 903 Pad/Ryan's Pit Plume pre-remedial field investigation (IT, 1998a), have indicated that groundwater occurrence and movement within the colluvium and underlying weathered bedrock is highly complex and difficult to predict—Groundwater flow is controlled by variations in surficial and bedrock topography, structural and lithologic heterogeneity within the colluvium and bedrock, and location of recharge and discharge areas—These factors combine to produce water table fluctuations of up to 9 feet in nearby wells (i e , 00491) (EG&G, 1995b, Appendix C), with a seasonally high depth to water of 4 to 8 feet below ground level, depending on location—At the proposed investigation area, the average depth to groundwater is estimated to range from 7 to 15 feet resulting in a colluvial saturated thickness of approximately 0 to 5 feet (IT Corp., 1998a)—Figure 1-3 illustrates the location of existing and abandoned monitoring wells found in the 903 Pad/Ryan's Pit VOC Plume investigation area Groundwater occurrence in UHSU deposits on the 903 Pad/Ryan's Pit hillslope is controlled by a local hydrogeologic setting that results in limited availability of water for plume migration. The south-facing hillslopes of major drainages generally receive smaller amounts of recharge than do north-facing slopes because of slope aspect effects (i.e., higher evapotranspiration demands) and a regional Rocky Flats. Alluvial groundwater flow direction to the northeast that favors discharge to north-facing hillslopes. In the 903 Pad/Ryan's Pit Plume area, the main sources of colluvial UHSU groundwater include subsurface discharge from the Rocky Flats Alluvium and isolated bedrock sandstone units, and infiltration of incident precipitation, especially during the Spring months. High on the hillslope, groundwater is discharged from the Rocky Flats Alluvium and a subcropping sandstone (Arapahoe Formation sandstone) to the colluvium at a seep complex found near the pediment rim extending from the southern edge of the 903 Pad to the former 903 hillside soil study area. Midslope sources of | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 16 of 54 | groundwater are mainly limited to precipitation and subcropping Laramie sandstones and siltstones, such as found at well 1487, which generally tend to be poor producers of water. Given the complexity of the hillside flow regime, it is expected that colluvial groundwater may also interact dynamically with the underlying weathered bedrock, with flow entering and exiting the bedrock in accordance with the pathway-of-least-resistance principle Groundwater on the 903 Pad/Ryan's Pit hillside flows downslope from north to south in a direction that approximates the surface topography. On a local scale, flow is expected to follow preferential pathways that may deviate significantly from expected pathways inferred from surface topography alone. Figure 1-4 illustrates the configuration of the bedrock surface based on the results of the pre-remedial field investigation (IT, 1998a). Spatial variations in the bedrock topographic configuration combined with zones of enhanced permeability created by landslide slip planes and lithologic heterogeneity are presumed to account for much of the irregularity indicated by the field data. These conditions, combined with the low to moderate permeabilities of colluvium and weathered bedrock, suggest that low groundwater flow rates are prevalent in the saturated areas of the 903 Pad/Ryan's Pit hillslope. For the saturated area extending from wells 01298 to 01798, IT (1998a) estimated a groundwater flow rate of approximately 8 cubic feet per day (60 gallons per day), most of which occurs primarily along colluvial pathways. This flow rate results in a correspondingly low contaminant flux based on contaminant concentrations detected during the pre-remedial investigation. The calculated total VOC contaminant flux for the distal end of the 903 Pad/Ryan's Pit Plume is estimated at 0.13 grams per day (IT, 1998a). The nearest receiving streams for the 903 Pad/Ryan's Pit VOC Plume are the South Interceptor Ditch (SID), located 150 feet upslope of Woman Creek, and Woman Creek Examination of historical aerial photographs and enhanced multispectral scanner images (EG&G, 1989), and subsequent field observations made in December 1998 indicate several potential discharge areas for shallow groundwater associated with the 903 Pad/Ryan's Pit VOC Plume No VOC or flow data are available for any of the seeps however, recent field observations of seep characteristics indicate that surface flow, if present, would be intermittant and probably minimal. Previous studies of hillslope seepage areas at RFETS (RMRS, 1998c) have indicated that seeps may represent concentrations of groundwater flow that are associated with primary contaminant plume pathways. Hydraulic connection with the SID | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 17 of 54 | structures Comparison of ditch bed elevations from as-built drawings of the SID to the projected bedrock surface elevations presented in Figure 1-4 indicate that colluvial groundwater, if present, should be close to bed level near the base of these structures. The localized nature of this vegetation suggests that any emergent groundwater will primarily evapotranspire rather than discharge laterally as ditch flow. As shown on Figure 1-3, groundwater discharge also occurs at a few scattered hillside seepage areas located upslope and downslope of the SID near the known southern extent of the 903. Pad/Ryan's Pit VOC Plume. Stream gain/loss investigations conducted along the segment of Woman Creek potentially impacted by the plume indicate that losing conditions are prevalent downstream of Pond C-1 to the first stream bend south of wells 23196 and 2987 (see Figure 6-22, Station 18 of EG&G [1995b]), but transition
to a year-round gaining reach in the vicinity of well 6586 (Station 19 of EG&G [1995b]). It is evident from this information that groundwater interactions with surface water are both locally important and locatable for monitoring design purposes. # 1 3 3 Type and Extent of Contamination Numerous VOCs have been detected in groundwater associated with the 903 Pad and Ryan's Pit source areas. The primary contaminants-of-concern are carbon tetrachloride, tetrachloroethene, and trichloroethene, which are detected above Tier I groundwater action level concentrations (500 μ g/L) in wells located approximately 400 and 1,000 feet downgradient of Ryan's Pit and the 903 Pad, respectively. Further downgradient, concentrations gradually diminish to Tier II groundwater action levels (5 μ g/L) as shown in Figure 1-2. Because VOC concentrations at the leading edge of the plume are below. Tier II groundwater action levels, this portion of the plume is not addressed under this SAP VOC contaminants associated with the Ryan's Pit plume are comprised predominantly of TCE (> Tier I) with lesser concentrations of PCE and carbon tetrachloride (< Tier I) In comparison, the 903 Pad plume is comprised mainly of carbon tetrachloride (> Tier I) with lesser concentrations of TCE and PCE (< Tier I) The concentrations of major constituents of the VOC plume in groundwater from pre-1998 wells located near the 903 Pad/Ryan's Pit downgradient plume boundary are provided in Table 1- | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan s Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 18 of 54 | Table 1-1 Downgradient Groundwater Concentrations - 903 Pad/Ryan's Pit Plume | Well
6286 | Well
6386 | Well
1487 | Well
2987 | Well
23196 | Well
01291 | RFCA Tier II
Groundwater
Action Level | |--------------|---------------------|------------------------------|---|---|---|---| | 8 | ND | 460 | ND | ND | 15 | 5 | | ND | ND | ND | ND | ND | 02 | 70 | | ND | ND | ND | 2 | ND | 0.5 | 5 | | ND | ND | 8 | ND | ND | 2 | 5 | | 0.8 | ND | 190 | ND | ND | 12 | 5 | | | 8
ND
ND
ND | 8 ND ND ND ND ND ND ND ND ND | 6286 6386 1487 8 ND 460 ND ND ND ND ND ND ND ND 8 | 6286 6386 1487 2987 8 ND 460 ND ND ND ND ND ND ND ND 2 ND ND 8 ND | 6286 6386 1487 2987 23196 8 ND 460 ND 2 ND ND ND 8 ND ND | 6286 6386 1487 2987 23196 01291 8 ND 460 ND ND 15 ND ND ND ND 02 ND ND ND 2 ND 05 ND ND 8 ND ND 2 | Note all values are maximum concentrations (μg/l) from 1996 sampling of monitoring wells. ND indicates not detected or below detection limit (RMRS 1997c) The Arapahoe Formation sandstone, which underlies the Rocky Flats Alluvium west, east, and northeast of the 903 Pad, is known to contain VOC-contaminated groundwater near subcrop zones, but does not appear to be contaminated east of the Pad. In this region, the sandstone is overlain by a continuous 4 to 20 foot claystone layer that restricts contaminated alluvial groundwater from entering the sandstone. The sandstone extends southward to the pediment rim where it is truncated by the valley wall and covered by colluvial deposits. This subcrop zone is related to the seep complex described earlier in Section 1.3.2. From the available information, it appears that groundwater discharge from the Arapahoe Formation sandstone may recharge hillslope colluvial deposits and dilute plume contaminants in the upper regions of the plume. This influence would be limited to the upslope areas of the hillside, as topographically lower Laramie Formation sandstones lack the vater transmitting ability of the Arapahoe Formation sandstone. As shown in Figures 1-5 and 1-6, trend plots of carbon tetrachloride and TCE concentrations in selected 903 Pad/Ryan's Pit Plume monitoring wells indicate the dynamic character of the plume Historical carbon tetrachloride and TCE concentrations in well 1487, located near the SID, indicate a slight upward trend that is consistent with an advancing plume hypothesis (RMRS, 1998a). Depending on the significance given to the 4th quarter 1994 and 2nd quarter 1995 data, the concentrations of these contaminants increase approximately 25 to 100 percent during the period 1989 to 1996, with multiple detections of carbon tetrachloride above Tier I action levels during the latter half of the monitoring period. Likewise, similar apparent trends are also observed for TCE in wells 1187 and 1287 located downgradient of Ryan's Pit, although the carbon tetrachloride concentration trends are generally downward in these wells. These apparent trends underscore the importance of monitoring as a means for protecting surface water quality Sharp to moderate fluctuations in quarterly carbon tetrachloride and TCE concentrations of up to several hundred $\mu g/L$ are apparently related to seasonal changes in water level, as concentrations generally rise dramatically following the Spring water level peak. Variations in sampling technique (i.e., bailing) and analytical data quality may also contribute to apparent fluctuations in the concentration data In March and April of 1998, a series of direct push (Geoprobe®) borings were installed between existing wells and the SID, which is the nearest surface water location (see Figure 1-3). The boreholes were placed in a line parallel to the SID to delineate the leading edge of the plume. The boreholes were completed as temporary wells with a ¾ inch casing and screen intervals of about five feet. Groundwater levels were generally checked within one day of well installation. Sampling and analysis of the groundwater was performed in accordance with the Sampling and Analysis Plan (SAP), Characterization of the 903 Pad/Ryan's Pit and East Trenches Plume (IT Corp., 1998b), and the appropriate RFETS Standard Operating Procedures referenced in the SAP The upper strata of unconsolidated sediments in these borings consisted of colluvium of various lithologies, principally silty clays and clayey silts, sometimes containing sand. Lenses of coarser, subangular to subrounded sands and gravels were occasionally encountered. Bedrock consisted of a grayish-brown massive claystone identified by a lack of coarse-grained material. The claystone varied from moist to very dry, often becoming drier with depth. In places the claystone also contained abundant caliche. The depth to bedrock varied from 2 6 feet in well 02198 to 18 8 feet in well 01198. The bedrock surface slopes to the southeast, in broad conformance with the surficial topography. Along the line of Geoprobe® borings, localized bedrock lows occur at borings 00598, 01198, 01298, 01498, and 01698, possibly indicating the presence of south-trending preferential flow pathways (Figure 1-4). A sequence of highly weathered claystone overlying sandy silt also suggests the possibility of slumping in shallow hillslope geologic deposits. Groundwater was encountered in only eight of the 26 wells installed in the study area. The six | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 20 of 54 | westernmost wells of the alignment were dry (Figure 1-7). To the east, groundwater was encountered infrequently with the water table generally occurring within weathered bedrock. The water table was observed within the colluvium in only three wells, all of which are distinguished by local bedrock lows (01298, 01498, and 01698). These wells contained approximately three feet or less of saturated colluvium (Figure 1-4) The analytical results of groundwater sampling presented in Table 1-2 show that nine VOCs were detected in the 1998 wells (RMRS, 1998a). Concentrations of the major plume constituents (carbon tetrachloride, tetrachloroethene, and trichloroethene) are presented in box plots shown in Figure 1-7 VOCs were detected in all six 1998 wells that contained sufficient water for sampling (01298, 01398, 01498, 01698, 01798, and 01998), although only five wells contained characteristic plume contaminants. VOC concentrations in these six wells exceeded Tier II groundwater action levels for methylene chloride in three wells, TCE in four wells, PCE in one well, and carbon tetrachloride in three wells. Tier I groundwater action level concentrations were attained in well 01298 for TCE (500 µg/L) and almost attained for carbon tetrachloride (460 µg/L), however, the "E" data qualifier associated with these results indicate that the data should be treated as tentative values. In addition to the plume constituents mentioned above, low to trace concentrations of ancillary VOCs, including 1,1-dichloroethene, chloroform, cis-1,2-dichloroethene, xylene, and naphthalene, were detected in
various wells The limited lateral distribution of colluvial groundwater found in the 1998 wells and erratic concentrations of plume contaminants in wells containing water are consistent with the interpretation that preferential pathways are largely responsible for contaminant migration on the 903 Pad hillside. Wells with the greatest colluvial saturated thicknesses (01298 and 01698) exhibit the highest VOC concentrations, thus suggesting that colluvial, rather than bedrock, pathways are the primary routes for plume migration toward surface water. Contaminant loading calculations prepared by IT (1998a) for each of the wells with VOC detections confirm this assertion. The unpredictable nature of these pathways is exemplified by the virtual absence of contaminants in wells 01398 and 01498 located in the swale directly downslope from contaminated well 1487, but found at similar contaminant concentrations in well 01298, located to the southwest. Consideration of hillslope bedrock topography and the TCE/carbon tetrachloride composition of the groundwater also suggest that the Ryan's Pit and | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 21 of 54 | Table 1-2 Plume Characterization Sampling - Volatile Organic Compounds in Groundwater | | RFCA Tier II | | | W | ell Numb | er | ···· | | |------------------------|---------------------------|-------|-------|-------|----------|--------|-------|--| | Analyte (μg/l) | Groundwater Action Level) | 01298 | 01398 | 01498 | 01698* | 01698* | 01798 | 01998 | | Methylene Chloride | 5 | 24 | 10 | 31 | | | | | | 1,1-Dichloroethene | 7 | 3 J | | | | 1 | | | | Chloroform | 100 | 96 | 7 | | 73 | 73 | 32 | | | Carbon Tetrachloride | 5 | 460 E | | | 150 | 140 | 13 | | | Trichloroethene | 5 | 500 E | 9 | | 42 | 40 | 12 | | | Tetrachloroethene | 5 | 0 023 | | | 8 | 7 | 2 J | ······································ | | Xylene (total) | 100 | | | | | | 1 J | | | cis-1,2-Dichloroethene | 70 | 9 | | **** | 5 | 5 | 1 J | | | Naphthalene | 1,460 | | 6 | | 3 J | | 4 J | | ^{* =} Duplicate Samples 903 Pad plumes may converge and comingle in the vicinity of well 01298. The importance of weathered bedrock in transporting contaminants is considered to be minimal given the fact that claystone was the predominant bedrock material encountered in the borings. #### 1 3 4 Conceptual Model Based on the existing data and hydrogeologic setting, a conceptual model of plume migration has been developed for the investigation area. Contaminants present in the groundwater exist as a result of historical releases from drum storage operations at the 903 Pad and liquid waste disposal at Ryan's Pit Drums containing volatile organic compounds and pit liquids leaked to the groundwater where the compounds became solubilized and were slowly transported laterally away from source areas along prevailing groundwater flow paths. The potential presence of DNAPL compounds at source areas imply that the 903 Pad/Ryan's Pit plume contaminants may be continuously released for many years to come, although DNAPLs have not been found to date at the 903 Pad. In the case of Ryan's Pit, previous source removal actions could eventually offset this effect VOC-contaminated groundwater originating at the 903 Pad area initially flows to the east and E = concentration exceeds the instrument calibration range and was diluted J = result is estimated value below reporting limit Blank Spaces = Not detected at detection limit of 5 ug/L Note Table includes only compounds detected in one or more of the samples subsequently spreads to the northeast and southeast. Some groundwater flow from the pad area may also flow directly south and southeast in the direction of Ryan's Pit. Alluvial groundwater flow discharges to hillside colluvial material below the pediment rim in the vicinity of a large seep complex. This flow is mixed and diluted with uncontaminated groundwater flow from the Arapahoe Formation sandstone, which subcrops beneath the colluvium in the vicinity of the seep. From this point, the plume follows preferential flow pathways in the colluvium toward the SID and Woman Creek. Similarly, plume contaminants originating from Ryan's Pit travel via preferential groundwater pathways in the colluvium to the southeast. These plumes may partially converge upgradient of the SID and undergo natural attenuation before discharging to the SID or Woman Creek alluvial systems. Several small hillside seeps located upslope and downslope of the SID above Woman Creek in the investigation area may indicate preferential flowpath locations related to plume migration routes. #### 2.0 SAMPLING RATIONALE Historical information detailed in Section 1 2 was used to develop a systematic sampling strategy for this investigation. The sampling rationale also accounts for the presence of preferential groundwater flowpaths evaluated in Section 1 3 2. Long-term monitoring well locations will be selected along groundwater flow paths delineated by Geoprobe® investigations. Groundwater sampling will mainly be restricted to new long-term monitoring wells, however, opportunity samples will be collected from Geoprobe® boreholes and seeps to further define the extent of plume contamination, if practicable Surface water grab samples will collected from stations located in both the SID and Woman Creek to assess any current impacts of plume contamination on surface water quality The following conditions were considered in the development of the sampling strategy - The operating history of 903 Pad Area and Ryan's Pit indicate that volatile organic compounds have been released to the groundwater environment and have migrated toward surface water streams, - The physical and chemical properties of the contaminants and available groundwater data indicate that natural attenuation processes have reduced plume contaminant concentrations downgradient of source areas, but have not been effective at completely mitigating plume advancement. - Hillslope groundwater contaminant occurrence is sporadic, difficult to predict, and limited to preferential flow pathways found primarily in colluvial materials associated with bedrock lows. - Contaminant concentrations at wells are influenced by plume dynamics and seasonal factors, such as water table fluctuations, and, - Preferential groundwater flow pathways may cause significant local effects on groundwater flow direction and discharge, including seep occurrence, that can affect monitoring system design and project success # 3.0 DATA QUALITY OBJECTIVES (DQOs) The data quality objective process consists of seven steps and is designed to be iterative, the outputs of one step may influence prior steps and cause them to be refined. Each of the seven steps are described below for the investigative area shown in Figure 4-1. Data requirements to support this project were developed and are implemented in the project using criteria established in *Guidance for the Data Quality Objective Process*, QA/G-4 (EPA, 1994) #### 3.1 State the Problem Previous investigations of the Site have identified VOC contaminated groundwater plumes associated with solvent releases from the 903 Pad Area and Ryan's Pit. These plumes have migrated away from source areas toward surface water streams. This investigation will better delineate colluvial groundwater flow pathways associated with plume contamination for the purpose of positioning monitoring wells to be used for natural attentuation monitoring, as proposed in the 903 Pad/Ryan's Pit Plume Monitoring Technical Memorandum (RMRS, 1998a). Monitoring of these wells will be initiated to assess the adequacy of natural attenuation processes for limiting risk to surface water quality from plume contaminants. This approach will be supplemented by an initial round of surface water sampling designed to assess the assumption that there is no current impact of plume VOC contaminants on surface water quality. # 3.2 Identify the Decision Decisions required to be made using field data collected from boreholes and groundwater wells, and the results of sample collected for laboratory analysis include - Do favorable groundwater conditions (i.e., saturated colluvial materials) exist upgradient of the SID and downgradient of existing wells 01298 through 01798 for the installation of long-term monitoring wells used to monitor natural attenuation in the plume? - Do contaminant trends in newly installed wells indicate that natural attenuation is an effective mechanism for protecting surface water quality? - Is surface water quality currently being impacted by the 903 Pad/Ryan's Pit Plume? # 3.3 Identify Inputs to the Decision Inputs to the decision include field observations and measurements of groundwater occurrence and distribution, VOC analytical results for groundwater samples collected from selected Geoprobe® exploratory borings and seeps for positioning new monitoring wells, and surface water VOC samples from the SID and Woman Creek to assess impacts to surface water quality. The parameters of interest include - Depth to bedrock below ground level (for calculating saturated thickness) - Depth to water below ground level (for calculating saturated thickness) - Saturated thickness - Initial water level recovery rate - Groundwater VOC concentrations, if available for siting wells - Surface water VOC concentrations - Surface water discharge, including seep flow rates Volatile organic chemical results of groundwater samples collected from newly-installed monitoring wells for trend analysis and comparison to RFCA Action Levels (DOE, 1997) are inputs necessary for making decisions related to plume fate and risk to surface water quality. The parameters of interest, | Sampling and Analysis Plan |
Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 25 of 54 | sample quantities, and analytical methodology are provided in Table 4-2 Further inputs to the decision include seep samples and water level measurements from new and existing monitoring wells, which will be used to delineate groundwater flow directions for interpretation of groundwater analytical data. Surface water samples for VOC analyses will be collected in the SID and Woman Creek to assess potential impacts to surface water quality. Streamflow measurements at each surface water sampling location will provide additional data for interpreting surface water VOC analytical results. Land surveying of new well casing locations (± 1 foot) and elevations (± 1 foot) will be conducted to provide control for potentiometric contouring #### 3.4 Define the Boundaries The investigative boundaries and rationale are detailed in Section 4 0 of this SAP #### 3.5 Develop a Decision Rule The decision rule for installing long-term monitoring wells is based on the presence and amount of free groundwater found in initial exploratory Geoprobe[®] borings located at potential drilling sites. This approach is being taken to more accurately delineate preferential plume pathways and improve well and monitoring program success. The area of proposed well locations is based on previous hydrogeologic investigations, current-day field observations, interpretation of groundwater flow directions, and seep locations. Dry borings will identify potential drilling sites that are unsuitable for well installations. Borings with the greatest saturated thickness and ability to supply water are considered to be the most favorable candidate sites for well installation. Groundwater samples and analytical results from the exploratory borings will be used, if collected and available, to verify drilling locations. The decision rule for surface water sampling involves an initial evaluation of results from the well drilling and groundwater sampling phase of the investigation. Surface water sampling locations will be chosen where plume flowpaths are projected to intersect the SID and Woman Creek. These locations will be sampled twice per year (Spring and Fall) to quantify potential fluxes to surface water. The number of sampling locations will be determined during the data evaluation phase following well. | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 26 of 54 | drilling and sampling The decision rule on further investigation or remediation will be based on 1) an analysis of sampling results using contaminant trend and surface water loading calculations, and 2) seep and surface water sample results. Table 3-1 contains the Action Level Framework (ALF) surface water action levels for contaminants-of-concern that will be used for assessing compliance with RFCA Table 3-1 ALF Surface Water Action Levels for the 903 Pad/Ryan's Pit Plume Contaminants-of-Concern | Compound | ALF Action Levels for
Surface Water (μg/L) | |------------------------|---| | Carbon Tetrachloride | 5 | | Cis-1,2-Dichloroethene | 70 | | Methylene Chloride | 5 | | Tetrachloroethene | 5 | | Trichloroethene | 5 | Additional characterization, if required, will be based upon an evaluation of data collected under this SAP and performed through the groundwater evaluation process specified in the IMP Groundwater monitoring will be performed in accordance with this SAP and the IMP (DOE, 1997) #### 3.6 Specify Limits on Decision Errors Confidence in contaminant monitoring for the 903 Pad/Ryan's Pit Plume and subsequent project decisions is dependent on monitoring well location success, sampling frequency, and quality control Well placement is a key aspect of the monitoring program because, given the complexity of the hydrogeologic setting, improper placement could jeopardize the ability of the program to generate samples and provide useable data. The timing and frequency of sampling is relevant to program success because contaminant concentrations in nearby wells have been shown to fluctuate with seasonal changes in water level. Quality control of field measurements and laboratory analytical data collected during the investigation is important because decision errors may result if not based on reliable information. | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 27 of 54 | Monitoring well placement errors (i.e., dry well conditions) will be minimized through the implementation of an exploratory boring program designed to locate preferential flow pathways related to plume movement. Exploratory Geoprobe® borehole placement is based on a professional judgement approach based on previous investigation results, the interpretation of current site conditions described in Section 1.0, and real-time exploratory boring results. One well, 90099, will be located next to well 01298 based on existing groundwater monitoring results. The remaining three monitoring wells will be located and installed using hydrogeologic information obtained from the exploratory Geoprobe® boring program. Initially, sampling bias caused by seasonal variations in water level and contaminant concentration will be minimized by implementation of a quarterly well sampling schedule for the first year. This approach will ensure that seasonal components of plume transport and flow are accounted for in subsequent trend and loading analyses, which are sensitive to concentration and, in the latter case, to saturated thickness. Sampling after the first year will be performed at least annually, but may be performed more frequently if required under the IMP Quality control samples for the project will include a 1 in 20 frequency for duplicate samples and equipment rinsates for VOC analysis. Relative percent difference (RPD) goals for groundwater VOCs will be 30% or less. A completion goal of 90% of the data analyzed and verified will be of acceptable quality for decision making. Twenty-five percent of the total analytical data will undergo validation by a third party. The remaining 75 percent of the data will be verified. Unless otherwise specified in this SAP, all field work will be performed in accordance with approved RMRS standard operating procedures. These procedures specify methods and equipment for ensuring the accuracy and integrity of well installations, field parameter measurements, sampling, and other related field data collection activities. A listing of applicable procedures is provided at the beginning of this document. | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 28 of 54 | # 3.7 Optimize the Design for Obtaining Data Monitoring well network design will be optimized through a combination of hydrogeologic interpretation of existing data and exploratory Geoprobe® borings. With this approach, potential plume pathway routes identified from the pre-remedial investigation data and projected southward using hydrogeologic interpretations are investigated for possible installation of long-term monitoring wells. Determination of the presence of colluvial groundwater at potential drilling sites will be optimized through a "step-out" style boring approach. Geoprobe borings oriented perpendicular to the assumed groundwater flow direction will be advanced to bedrock in search of colluvial groundwater. The initial borehole will be located along the centerline of the assumed pathway route. From that point, borehole spacings will be determined by the field geologist based on field results from the preceding boreholes. Borings with the greatest colluvial saturated thicknesses (i.e., 1 foot or greater) will indicate the most favorable well drilling sites while dry borings will indicate the least favorable sites. Groundwater samples from one or more borings may be collected and analyzed to verify the presence of plume contaminants. This method will be implemented for the three proposed well sites located downgradient of new well 90099 to be installed next to well 01298. Surface water sampling design will be optimized by utilizing the results of initial well drilling and groundwater sampling to locate the likely discharge points for plume pathways in the SID and Woman Creek Samples will be collected twice per year (Spring and Fall) to evaluate current impacts to surface water quality An initial quarterly well sampling frequency will serve to optimize the seasonal aspects of water level and VOC concentration variations, while minimizing costs and other resources. Lower resolution sampling (semi-annual and annual) during the first year would potentially compromise the validity of subsequent interpretations because seasonal effects would not be factored into the analyses. Higher resolution sampling (i.e., monthly or bimonthly) would result in better definition of seasonal variations, but would add little value to the program given the slow rate of plume movement. Subsequent sampling timing (calendar quarter selection) and frequency will be specified in the IMP based on the sampling results of the first year. For plume monitoring purposes, only VOC samples will be collected
under this SAP, as the purpose of the monitoring program involves an evaluation of primary RF/RMRS-99-312 July 13, 1999 Page 29 of 54 Final contaminant concentrations and trends for protecting surface water quality # 4.0 SAMPLING ACTIVITIES AND METHODOLOGY # 4.1 Sampling Station Locations and Numbering #### 4 1 1 Monitoring Wells Four (4) monitoring well locations have been chosen to monitor groundwater quality associated with the 903 Pad/Ryan's Pit Plume. One well (90099) will be positioned next to well 01298 to monitor upgradient groundwater quality, and two wells (90199 and 90299) will be positioned to the south along primary plume pathways to monitor groundwater quality at the north edge of the SID. The fourth well (90399) will be paired with well 90199 to monitor VOC contamination in weathered bedrock. Figure 4-1 illustrates the approximate location of these wells in relationship to the probable plume pathway located from hydrogeologic considerations. The total number and arrangement of wells reflects the spatial limitations imposed by the terrain, distance to the SID, and geometry of the plume pathway. Well names (location codes) were assigned based on a five digit numbering system adopted by the Site in 1992, with the year drilled indicated by the last two digits. The rationale for each monitoring well location is summarized in Table 4-1. A block of borehole numbers will also be assigned to the exploratory Geoprobe® borings using a similar borehole naming convention. #### 4 1 2 Surface Water Stations Surface water sampling sites for the SID and Woman Creek will be located in the area shown in Figure 4-2. The exact location and number of sampling sites will be determined following an evaluation of data collected during the well drilling and groundwater sampling phase of the investigation. It is expected that this approach will better delineate potential groundwater flowpaths and discharge areas associated with plume migration, which, in turn, will be used to identify stream reaches that are likely to receive the greatest contaminant fluxes. Four surface water (stream) sampling locations are assumed for planning purposes, although it is recognized that additional locations may be necessary to adequately evaluate contaminant fluxes into the stream. At each selected station, minor deviations in | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 30 of 54 | Table 4-1 Monitoring Well Location Rationale | Well
Number | Location | Rationale | | | |----------------|---|--|--|--| | 90099 | At well 01298 | Monitor colluvial groundwater quality | | | | 90199 | At the north edge of the SID below well 01298 | Monitor groundwater quality downgradient of well 01298 to assess natural attenuation along plume pathways | | | | 90299 | At the north edge of the SID below well 01698 | Monitor groundwater quality downgradient of well 01698 to assess natural attenuation along plume pathways | | | | 90399 | At the north edge of the SID below well 01298 | Monitor groundwater quality downgradient of well 01298 to assess natural attenuation along plume pathways in weathered bedrock | | | location, either upstream or downstream of the eventual map sites, may be made by sampling personnel for purposes of improving access to the stream and locating favorable channel sections for flow measurement and sample collection #### 4 2 Well Design and Installation #### 4 2 1 Well Design The type of monitoring wells selected for monitoring 903 Pad/Ryan's Pit Plume contaminants are conventional 2-inch inside diameter wells that are suitable for long-term monitoring of shallow water-bearing zones. These wells will be designed with screened intervals that fully penetrate saturated colluvial materials. A screen length of 5 feet is tentatively selected for all wells based on evidence from existing wells which indicate the presence of thinly saturated conditions. To ensure that these wells have a multi-purpose monitoring function, potentially contaminated surface soils associated with the 903 Pad radionuclide release will be cased-off from deeper zones using surface conductor casing isolation techniques. Final depth determinations will be made in the field based on actual drilling and initial depth to water results. All wells will be installed using dual ("aseptic") casing construction methods described in GT 06, Monitoring Well and Piezometer Installation Typical well construction materials will consist of a two | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | | |-----------------------------------|-----------------|----------------|--| | for Groundwater Monitoring at the | Revision | Final | | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | | Page | Page 31 of 54 | | foot section of 16 to 20-inch inner diameter (ID) steel surface casing and concrete pad, and 2-inch ID, schedule 40 or 80 polyvinyl chloride (PVC) riser and factory cut (0 010-inch slot width) well screen Protective casing consisting of 6-inch ID or larger steel riser with locking cap and lock will be set in sackrete to a depth of about 2 to 3 feet # 4 2 2 Pre-Drilling Activities Before advancing boreholes, all locations will be cleared in accordance with PRO 102, Borehole Clearing, and marked in accordance with GT 39, Push Subsurface Soil Sampling A prework radiological survey will be conducted in accordance with FO 16, Field Radiological Measurements All Health and Safety protocols will be followed in accordance with the 903 Pad/Ryan's Pit Plume Health and Safety Plan addendum, as appropriate # 4 2 3 Borehole Drilling and Logging # 4 2 3 1 Geoprobe® Borings Exploratory boreholes will be drilled at proposed well sites using push-type techniques (Geoprobe®) to assist in locating plume pathways. Detailed drilling and sampling procedures using this methodology are provided in GT 39. If probe refusal is encountered before reaching bedrock, the borehole will be abandoned using procedure PRO 117, *Plugging and Abandonment of Boreholes*, and an offset boring will be attempted within 3 feet of the original boring Soil cores will be recovered continuously in 2 to 4-foot increments using a 1-inch diameter by 48-inch long stainless steel- or lexon-lined California core barrel. Following recovery, cores will be monitored with a Flame Ionization Detector (FID) or a Photoionization Detector (PID) in accordance with Site Procedure 5-1000-OPS-FO 15, Photoionization Detectors and Flame Ionization Detectors, for health and safety purposes. The core samples will then be boxed and logged in accordance with PRO 101, Logging Alluvial and Bedrock Material, except that logging will be conducted more qualitatively than specified in PRO 101 (i.e., sieving, microscope examination, and plasticity testing will not be conducted). All core boxes will be labeled and transferred to an ER core storage conex for archiving Sampling and Analysis Plan for Groundwater Monitoring at the 903 Pad/Ryan's Pit VOC Plume Document Number Revision Final Effective Date Page Page 32 of 54 following project completion After the boring reaches bedrock, an initial saturated thickness of colluvium will be estimated from water level measurements made within the boring through the drive pipe or temporary retrievable casing. These measurements will be repeated after a 24 hour or longer period to allow for water level recovery effects. If a sufficient amount of water collects in the boring to permit groundwater sampling, an opportunistic sample for VOC analysis may be collected at the discretion of the Project Manager for the purpose of verifying the presence of plume contamination. Following drive pipe or casing removal, the borehole will be abandoned in accordance with procedure PRO 117, *Plugging and Abandonment of Boreholes*, unless reserved for monitoring well installation. #### 4 2 3 2 Monitoring Wells Boreholes for monitoring well installation will be advanced to bedrock through a two foot depth of preset surface conductor casing using hollow stem auger techniques. Well locations will be chosen at an existing Geoprobe® borehole location selected on the basis of favorable hydrogeologic characteristics, including depth to bedrock, saturated colluvial thickness, and relative water level recovery rates. In general, soil core samples will not be collected for logging purposes unless the Geoprobe® bedrock contact is questionable and requires further verification. All drilling activities will comply with procedure PRO 114, Drilling and Sampling Using Hollow-Stem Auger and Rotary Drilling and Rock Coring Techniques. #### 4 2 4 Well Installation Groundwater monitoring wells will be installed in accordance with FO 06, Monitoring Wells and Piezometer Installation Monitoring wells will be land surveyed in accordance with GT 17, Land Surveying, or RFETS global positioning system manuals (Ashtech, 1993) #### 4.3 Well Development Monitoring wells will be developed prior to sampling using the procedures specified in PRO 106, Well | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 33 of 54 | Development All water produced during well development will be handled as uncharacterized development water in accordance with FO 05, Handling Purge and Development Water #### 4.4 Sample Designation The site standard sample numbering system will be implemented in this project. Location codes have been assigned to
individual wells as shown in Figure 4-1 and listed in Table 4-1 using the ER well numbering convention adopted in 1992. For each groundwater sample or surface water sample, dual sample numbers will be assigned. 1) a standard RIN sample number (i.e., 98AXXXX 00X 00X) will be assigned to the project by the Analytical Services Division (ASD), and 2) an RMRS sample number (i.e., GW0XXXXTE or SW0XXXXTE) for internal sample tracking. The block of sample numbers will be of sufficient size to include the entire number of possible samples (including QA samples) and location codes. For the final report, the ASD and RMRS sample numbers will be cross-referenced with location codes. # 4.5 Sample Collection #### 4 5 1 Groundwater Samples Prior to sample collection, the water level will be measured according to PRO 105, Water Level Measurements in Wells and Piezometers, to determine purge water requirements Groundwater samples will be collected using the methods specified in PRO 108, Measurement of Groundwater Field Parameters, and PRO 113, Groundwater Sampling After an initial sampling round is completed for all new wells, sampling of wells will be conducted on a quarterly basis in support of natural attenuation monitoring, as specified by the IMP (to be modified for 903 Pad/Ryan's Pit Plume monitoring wells) | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 34 of 54 | # 4 5 2 Surface Water Samples #### 4 5 2 1 Flow-Measurement Procedures Stream-flow measurements will be made at each sampling station using either the volumetric method for small flows specified in PRO 093, *Discharge Measurement*, or portable cutthroat flumes for larger flows as described below and in accordance with PRO 093, *Discharge Measurement*, and Skogerboe et al (1973) Cutthroat flumes manufactered for RFETS use employ a large plastic apron at the upstream end of the flume which, when used with sand bags, reduce leakage to acceptable values (usually less than 10 percent of the total measured discharge) during stream-flow measurements. Throat widths ranging from 1 to 12 inches are available for measuring the normal range of flow conditions in the SID and Woman Creek. Flume selection will be based on historical seasonal discharge data (Woman Creek) and visual estimates of flow made at the time of sampling Accurate stream-flow measurement is dependent on a number of factors, including flume selection, installation, and alignment, channel geometry and bed conditions, and flow depth and approach conditions. According to Skogerboe et al. (1973), the flume should be placed in a straight section of channel preferably with relatively uniform flow conditions in a non-ponded area. Place the flume in the center of the channel and align parallel to the axis of the channel and flow. Seat the flume, spread the apron upstream, and seal the stream bed with sand bags until minimal or no leakage is observed past the flume. Using a leveling device, level the flume in the x-y direction and wait at least 15 minutes for flow to stabilize before taking a staff reading. The staff reading should be taken to the nearest 0.01 foot in the inlet converging section of the flume at a distance of $L_a = 2L/9$ (Skogerboe et al, 1973) where L_a is the centerline distance from the throat to the inlet staff measurement location, and L is the flume length The staff reading is then entered into the appropriate rating equation found in Skogerboe et al (1973) | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 35 of 54 | to provide the flow rate # 4 5 2 2 Surface Water Sample Collection Prior to sample collection, surface water field parameters will be measured using the methods specified in PRO 094, Field Measurements of Surface Water Field Parameters Grab samples for VOC analysis of surface water will be collected by container immersion, if a sufficient water depth exists for submergence, or a transfer device (i e , dipper), for low flow conditions, in accordance with the requirements of PRO 081, Surface Water Sampling All samples will be collected immediately upstream of the discharge measurement point to avoid collecting sediment suspended by channel disturbances associated with flow measurement # 4.6 Sample Handling and Analysis Samples will be handled according to PRO 069, Containing, Preserving, Handling, and Shipping of Soil and Water Samples, and 1-PRO-079-WGI-001, Waste Characterization, Generation, and Packaging If necessary, a Health and Safety Specialist (HSS) or Radiological Control Technician (RCT) will scan each sample with a Field Instrument for the Detection of Low Energy Radiation (FIDLER) Equipment will also be monitored for radiological contamination during and after sampling activities if required Table 4-2 indicates the analytical requirements for each sample. Samples will be submitted to an offsite, EPA-approved laboratory for analysis under a 30-day result turnaround time, unless shorter turnaround times for special opportunity samples (i.e., Geoprobe® borings) are specified by the Project Manager to aid in siting well locations # 4.7 Equipment Decontamination and Waste Handling Reusable drilling and sampling equipment will be decontaminated with Liquinox solution, and rinsed with deionized or distilled water, in accordance with procedure FO 03, *Field Decontamination*Procedures Decontamination waters generated during the project will be managed according to | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 36 of 54 | procedure PRO 112, Handling of Field Decontamination Water and Field Wash Water Geoprobe[®] and drilling equipment will be decontaminated following project completion using procedure FO 04, Decontamination of Heavy Equipment at Decontamination Facilities Personal protective equipment will be disposed of according to FO 06, Handling of Personal Protective Equipment All excess drill cuttings will be handled in accordance with PRO 115, Monitoring and Containerizing Drilling Fluids and Cuttings Table 4-2 Analytical Requirements for Groundwater, Surface Water, and Seep Samples | Analysis | Sample
Type | Matrix | No. of
Samples/
Event ^a | No. of
Events | EPA
Method | Container | Preservation | Holding
Time | |--------------------------------------|---------------------------|--------|--|------------------|---------------|---|---------------------------|-----------------| | Target Compound List (TCL) Volatiles | Ground-
water | Water | 6 | 4 | EPA 524 2 | 3 (three) 40 ml
amber glass
vials with
teflon-lids | Unfiltered,
cool, 4° C | 14 days | | Target Compound List (TCL) Volatiles | Surface
Water/
Seep | Water | 7° d | 2 | EPA 524 2 | 3 (three) 40 ml
amber glass
vials with
teflon-lids | Unfiltered,
cool, 4° C | 14 days | | Rad Screen | GW/SW/
Seep | Water | 10 ^c | 4 | N/Ab | 1 (one) 125 ml
poly bottle | Unfiltered | 180 days | ^a Includes two QC samples except for rad screens #### 5.0 DATA MANAGEMENT A project field logbook will be created and maintained by the project manager or designee in accordance with Site Procedure 2-S47-ER-ADM-05 15, *Use of Field Logbooks and Forms* The logbook will include time and date of all field activities, sketch maps of sample locations, and any b No EPA-approved method is currently in place for radionuclide analyses However, guidance is provided in procedures defined in Environmental Monitoring Support Laboratory (EMSL)-LV 0539-17, Radiological and Chemical Analytical Procedures for Analysis of Environmental Samples, March 1979 ^c Initial characterization sampling only ^d Four surface water and three seep samples | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 37 of 54 | additional relevant information not specifically required by the SAP. The originator will legibly sign and date each logbook page. Appropriate field data forms will also be utilized when required by the operating procedures that govern the field activity. A peer reviewer will examine each completed original hard copy of data. Any modifications will be indicated in ink, and initialed and dated by the reviewer. Logbooks will be controlled through RMRS Document Control. Borehole geologic logs will be entered into the Equis Geo database for electronic storage and future applications. Analytical data record storage for this project will be performed by KH-ASD. Sample analytical results will be delivered directly from the laboratory to KH-ASD in an Electronic Disc Deliverable (EDD) format and archived in the Soil and Water Database (SWD). Hard copy records of laboratory results will be obtained from KH-ASD in the event that the analytical data is unavailable in EDD or SWD at the time of report preparation. ## 6.0 PROJECT ORGANIZATION Figure 6-1 illustrates the project organization structure. The RMRS Groundwater Operations manager will be responsibility for supplying equipment and personnel, and maintaining data collection and management methods that are consistent with Site operations. Other organizations assisting
with the implementation of this project are. RMRS Health and Safety, RMRS Closure Projects, RMRS Quality Assurance, RMRS Radiological Engineering, and KH-ASD. Sampling personnel will be responsible for field data collection, documentation, and transfer of samples for analysis. Field data collection will include sampling and obtaining screening results. Documentation will require field logs and completing appropriate forms for data management and chain-of-custody shipment. The sampling crews will coordinate sample shipment for on-site and off-site analyses through the ASD personnel. The sampling manager is responsible for verifying that chain-of-custody documents are complete and accurate before the samples are shipped to the analytical laboratories. ### 7.0 HEALTH AND SAFETY PLAN All field activities contained within this SAP will be performed in accordance with the health and safety requirements set forth in an addendum to the *Health and Safety Plan for the 1996 Well Abandonment and Replacement Program*, RF/ER-96-0016 This addendum will be prepared and approved prior to the initiation of field work and will specifically address hazards and preventative measures associated with well and Geoprobe® drilling, and surface and groundwater sampling at the project site # 8.0 QUALITY ASSURANCE All components and processes within this project will comply with the RMRS Qualify Assurance Program Description RMRS-QAPD-001 (RMRS, 1997a), which is consistent with the K-H Team QA Program. The RMRS QA Program is consistent with quality requirements and guidelines mandated by the EPA, CDPHE and DOE. In general, the applicable categories of quality control are as follows. - Quality Program, - Training, - Quality Improvement, - Documents/Records, - Work Processes, - Design, - Procurement, - Inspection/Acceptance Testing, - Management Assessments, and - Independent Assessments The project manager will be in direct contact with QA to identify and address issues with the potential to affect project quality. Field sampling quality control will be conducted to ensure that data generated from all samples collected in the field for laboratory analysis represent the actual conditions in the field. The confidence levels of the data will be maintained by the collection of QC and duplicate samples and equipment rinsate samples. | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan s Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 39 of 54 | Duplicate samples will be collected on a frequency of one duplicate sample for every twenty real samples. Rinsate samples will be generated at a frequency of one rinsate sample for every 20 real samples collected. Data validation will be performed on 25% of the laboratory data according to the Rocky Flats ASD, Performance Assurance Group procedures. Samples will be randomly selected from adequate surface and subsurface sample sets (RINS) by ASD personnel to fulfill data validation of 25% of the total number of VOC and radioisotopic analyses. Table 8-1 provides the QA/QC samples and frequency requirements of QA sample generation. Table 8-1 QA/QC Sample Type, Frequency, and Quantity | Sample Type | Frequency | Comments | Quantity/Event (estimated) | |-------------|--|---|----------------------------| | Duplicate | One duplicate for each twenty real samples | | 1 | | Rinse Blank | One rinse blank for each twenty real samples | To be performed with reusable sampling equipment following decontamination procedures | 1 | Analytical data that is collected in support of 903 Pad/Ryan's Pit Plume monitoring will be evaluated using the guidance developed by the RMRS Administrative Procedure RF/RMRS-98-200, Evaluation of Data for Usability in Final Reports This procedure establishes the guidelines for evaluating analytical data with respect to precision, accuracy, representativeness, completeness, and comparability (PARCC) parameters A definition of PARCC parameters and the specific applications to the investigation are as follows <u>Precision.</u> A quantitative measure of data quality that refers to the reproducibility or degree of agreement among replicate or duplicate measurements of a parameter. The closer the numerical values of the measurements are to each other, the lower the relative percent difference and the greater the precision. The relative percent difference (RPD) for results of duplicate and replicate samples will be tabulated according to matrix and analytical suites to compare for compliance with established precision DQOs. Specifications on repeatability are provided in Table 8-2. Deficiencies will be noted and qualified, if required Accuracy. A quantitative measure of data quality that refers to the degree of difference between measured or calculated values and the true value of a parameter The closer the | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Fınal | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 40 of 54 | measurement to the true value, the more accurate the measurement. The actual analytical method and detection limits will be compared with the required analytical method and detection limits for VOCs and radionuclides to assess the DQO compliance for accuracy Representativeness. A qualitative characteristic of data quality defined by the degree to which the data absolutely and exactly represent the characteristics of a population Representativeness is accomplished by obtaining an adequate number of samples from appropriate spatial locations within the medium of interest. The actual sample types and quantities will be compared with those stated in the SAP or other related documents and organized by media type and analytical suite. Deviation from the required and actual parameters will be justified. Completeness. A quantitative measure of data quality expressed as the percentage of valid or acceptable data obtained from a measurement system. A completeness goal of 90% has been set for this SAP. Real samples and QC samples will be reviewed for the data usability and achievement of internal DQO usability goals. If sample data cannot be used, the non-compliance will be justified, as required <u>Comparability</u>. A qualitative measure defined by the confidence with which one data set can be compared to another Comparability will be attained through consistent use of industry standards (e.g., SW-846) and standard operating procedures, both in the field and in laboratories Statistical tests may be used for quantitative comparison between sample sets (populations) Deficiencies will be qualified, as required Quantitative values for PARCC parameters for the project are provide in Table 8-2 Table 8-2 PARCC Parameter Summary | PARCC | Radionuclides | Non-Radionuclides | |--------------------|---------------|--| | Precision | N/A | RPD ≤ 30% for VOCs | | Accuracy | N/A | Comparison of Laboratory Control Sample Results with Real Sample Results | | Representativeness | N/A | Based on SOPs and SAP | | Comparability | N/A | Based on SOPs and SAP | | Completeness | N/A | 90% Useable | Laboratory validation shall be performed on 25% of the characterization data collected in support of | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 41 of 54 | this project Laboratory verification shall be performed on the remaining 75% of the data Data usability shall be performed on laboratory validated data according to procedure RF/RMRS-98-200, Evaluation of Data for Usability in Final Reports Data validation will be performed according to KH-ASD procedures, but will be done after the data is used for its intended purpose Analytical laboratories supporting this task have all passed regular laboratory audits by KH-ASD ## 9.0 SCHEDULE Geoprobe® activities are scheduled to begin in late March 1999 followed by well drilling in mid-April All well installation activities are scheduled to be completed by the end of the month (April 30, 1999) Well development, groundwater sampling, and surface water sampling will commence within one week of well completions. Land surveying or GPS of well and borehole locations and elevations will be performed following the completion of all intrusive activities ### 10.0 REFERENCES Ashtech, 1993, Ashtech XII GPS Receiver Operating Manual, Version 7 DOE, 1992, Historical Release Report for the Rocky Flats Plant, Rocky Flats Plant, Golden, CO DOE, 1993, Background Geochemical Characterization Report, September DOE, 1994, Final Phase III RFI/RI Report, 881 Hillside (Operable Unit No 1), Rocky Flats Plant, June 1994 DOE, 1995, Phase II RCRA RFI/RI Report, 903 Pad, Mound, and East Trenches Area, OU2 DOE, 1996, Rocky Flats Cleanup Agreement, Final, July DOE, 1997, RFETS, Integrated Monitoring Plan, June EG&G, 1989, A Multispectral Scanner Survey of the United States Department of Energy's Rocky Flats Plant, Golden, Colorado, MRSD-8902, September 1989 | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13, 1999 | | | Page | Page 42 of 54 | - EG&G, 1995a, Geologic Characterization Report for the Rocky Flats Environmental Technology Site,
Volume 1 of the Sitewide Geoscience Characterization Study, Final Report, April - EG&G, 1995b, Hydrogeologic Characterization Report for the Rocky Flats Environmental Technology Site, Volume II of the Sitewide Geoscience Characterization Study, Final Report, April - EPA, 1994, Guidance for Data Quality Objectives Process, EPA QA/G-4, September - Fedors, R and J W Warner, 1993, Characterization of Physical and Hydraulic Properties of Surficial Materials and Groundwater/Surface Water Interaction Study at Rocky Flats Plant, Golden, Colorado Colorado State University, Fort Collins, Colorado - IT Corporation, 1998a, Draft Conceptual Remediation Design, 903 Pad/Ryan's Pit Plume Project, July 1998 - IT Corporation, 1998b, Sampling and Analysis Plan, Characterization of the 903 Pad/Ryan's Pit and East Trenches Plumes - RMRS, 1996, Final Phase I RFI/RI Report, Woman Creek Priority Drainage, Operable Unit 5, RF/ER-96-0012 UN, April 1996 - RMRS, 1997a, RMRS Quality Assurance Program Description, RMRS-QAPD-001, Rev 1, January - RMRS, 1997b, Closeout Report for the Remediation of Individual Hazardous Substance Site 109, Ryan's Pit, RF-ER-96-0034 UN, Revision 0, July - RMRS, 1997c, 1996 Annual Rocky Flats Cleanup Agreement (RFCA) Groundwater Monitoring Report for Rocky Flats Environmental Technology Site, RF/RMRS-97-087 UN, November - RMRS, 1998a, Technical Memorandum, Monitoring of the 903 Pad/Ryan's Pit Plume, RF/RMRS-98-294 UN - RMRS, 1998b, Final Sampling and Analysis Plan for the Site Characterization of the 903 Drum Storage Area (IHSS 112), 903 Lip Area (IHSS 155), and Americium Zone, RF/RMRS-97-084, Revision 1, August 1998 - RMRS, 1998c, 1997 Annual Rocky Flats Cleanup Agreement (RFCA) Groundwater Monitoring Report for Rocky Flats Environmental Technology Site, RF/RMRS-98-273 UN, November - Skogerboe, G V, R S Bennett, and W R Walker, 1973, Selection and Installation of Cutthroat Flumes for Measuring Irrigation and Drainage Water, Colorado State University Experiment Station Technical Bulletin 120, Fort Collins, Colorado | Sampling and Analysis Plan | Document Number | RF/RMRS-99-312 | |-----------------------------------|-----------------|----------------| | for Groundwater Monitoring at the | Revision | Final | | 903 Pad/Ryan's Pit VOC Plume | Effective Date | July 13 1999 | | | Page | Page 43 of 54 | # **FIGURES** Cest Available Copy Figure 1-5 Carbon Tetrachloride Trends in Selected 903 Pad/Ryan's Pit Plume Monitoring Wells # 903 Pad Plume Monitoring Wells Lower Plume Region # Figure 1-5 (Cont') Carbon Tetrachloride Trends in Selected 903 Pad/Ryan's Pit Plume Monitoring Wells Figure 1-6 Trichloroethene Trends in Selected 903 Pad/Ryan's Pit Plume Monitoring Well | Sampling and Analysis Plan | |-----------------------------------| | for Groundwater Monitoring at the | | 903 Pad/Ryan's Pit VOC Plume | Document Number Revision Effective Date Page RF/RMRS-99-312 Final July 13, 1999 Page 54 of 54 Figure 6-1 903 Pad/Ryan's Pit Plume Monitoring Organization Chart # RESPONSE TO CDPHE and EPA COMMENTS ON THE DRAFT 903 PAD/RYAN'S PIT PLUME SAP #### **CDPHE General Comments** This plan lacks a definite hypothesis for the apparent natural attenuation of these plumes by discharge to near ground surface. Evidence is presented for discharge of shallow ground water but a formal plan to prove out the termination of the plume in each identified pathway is lacking. The proposed surface water sampling is of little utility to help define where the plumes are discharging to the SID or to other seeps. A number of decision rules should be written for this plan to focus the analysis of the data to be collected. If the else options turn out to be true and further sampling is needed it should be anticipated in this SAP rather than having to make an addendum to it. This plan should support a formal evaluation of the natural attenuation taking place by volatilization from ground water to the atmosphere via seeps or evapotranspiration. All pathways to surface water should be quantified as well as possible so that the contaminant mass being removed can be estimated. The end result of this SAP should be long term monitoring locations that demonstrate there is no impact to surface water from these plumes. Response The current SAP has proposed an approach to ascertaining the potential for natural attenuation based on existing information on the site Changes will be made to the SAP with respect to surface water sampling criteria as discussed in comment #4 below. The adequacy of the proposed well installations for long term monitoring will be evaluated during the data evaluation phase. Should the resultant data suggest that additional investigation is called for, it can be done through the groundwater evaluation process under the IMP. Subsection 3.5 (last paragraph.) of the SAP will be updated to reflect this information. ### **CDPHE Specific Comments** 1 Section 1 3 2 (p 16) The input parameters and calculations that produced IT's VOC contaminant flux estimate should be provided as an appendix RESPONSE The input parameters and calculations were included in the Final Technical Memorandum for Monitoring of the 903 Pad/Ryan's Pit Plume The SAP was written such that it would limit, as much as possible, the duplication of information contained in the Tech Memo 2 Section 1 3 4 (p 22) Our comments on the Draft Conceptual Remediation Design for this project criticized the head maps provided This document discusses ground water flow as requested but no head maps to support the discussion are provided in this document Response A head map was included in the Draft Conceptual Remediation Design Document for 903/Ryans Pit Plume, which was submitted to CDPHE The SAP was written such that it would limit, as much as possible, the duplication of information contained in the previous plans submitted. It is believed that owing to the sparse well coverage in the area, a better depiction of groundwater flow path is not possible at this time. Once the proposed wells are installed they will provide better definition of the potentiometric surface and allow for a better understanding of flow in this area. A revised head map will then be included in subsequent reports 3 Figure 4-1 contains two proposed locations for a well numbered 90199 There is a discrepancy between well 90099 as stated on page 28 and well 90199 on Fig 4-1 Response As listed on page 30 and shown on Figure 4-1 Well 90199 will be located due south of well 90099 in the westernmost of the two assumed plume pathways shown No additional locations for well 90199 could be found on the figure 4 Section 2 0 (p 22) We agree with the proposed well locations but believe the surface water sampling should be revised to support demonstration of VOC discharge locations. Several sequential decisions are involved in this process. First, if the geoprobe borings and sample results indicate a pathway for contaminated ground water, then complete a well in the pathway (applicable for sites 90299 and 90399), else evaluate water levels and sample nearby seeps to confirm presence of discharging groundwater and VOC's We would suggest sampling surface water at the seep locations nearest the suspected ground water pathways as located on the attached revised version of Figure 4-1 These samples may have to wait until favorable ground water discharge conditions Decision rules should be developed to guide the surface water sampling as well Response In the June 18, comment resolution meeting, agreement was reached that the surface water sample locations in both the SID and Woman Cr would be determined after the results of the well and Geoprobe drilling were completed. This would give a better indication of the most appropriate surface water sampling sites. It was also agreed that a surface water sample would be collected in both fall and spring periods to better quantify the potential flux to surface water. The SAP will be updated to reflect these changes. The term permanent monitoring well locations is used several times in this section. A better term might long-term monitoring (as stated on p 30) or routine IMP monitoring or merely monitoring well locations. Response The term permanent monitoring well will be replaced with long term monitoring well This section implies that the sampling functions will be handled through the IMP, at least after the first year of quarterly sampling Should this be explicitly stated? Response The sampling functions after the first year will be handled through the IMP The frequency etc will be best answered after the results of the drilling and sampling program are completed. It will then be known what the level of contamination is, whether pathways exist to surface water etc. Determinations can then be made as to what long term monitoring is required. The IMP can then be updated to include these requirements. 5 Section 5 0 We have a data entry program written to enter geologic logs into the Equis Geo database Once the translation of old logs to the database is accomplished by CDPHE we expect RFETS to pick up the task of entering new boring logs and well completion information Response The RFETS Groundwater Group plans to use the Equis Geo software for future well log input ### **EPA General Comment** Two potential groundwater pathways are to be investigated by installation of monitoring wells. The west pathway includes well 90099 directly down gradient of wellpoint 01298 and well 90199 approximately 120 feet further down gradient, the exact location of which is to be determined based upon the results of a line of geoprobe borings in that vicinity. If the theory of DOE's subcontractor is correct and the data shows that well 90199 contains uncontaminated groundwater and is in the optimal location to demonstrate that natural attenuation is occurring in this pathway, further investigation of this pathway may not be necessary. However, it is entirely likely that the results are not clear cut and either more
geoprobe borings or an additional monitoring well(s) is needed to complete the picture. Although DOE would prefer to limit the numbers of wells and geoprobe borings, this investigation needs to take a more iterative approach, which will be dependent upon the results that are gathered in the field Response The current SAP has proposed an approach to ascertaining the potential for natural attenuation based on existing information on the site. It is recommended that the project be completed as scoped. Should the resultant data suggest that additional investigation is called for, follow-up studies can be performed through the groundwater evaluation process under the IMP. Subsection 3.5 (last paragraph.) of the SAP will be updated to reflect this information. The eastern pathway being investigated only has well 90299 which will be placed down gradient of a seep area and up gradient of the SID Why does this pathway not include a well near wellpoint 01698, similar to the western pathway well 90099? It is very possible that the groundwater in this pathway surfaces at the seep shown in fugure 4-1, and if so, it would make sense to have a well just up gradient of the seep, in addition to geoprobe borings down gradient of the seep Response The determination on well placement was made based on the results of the plume flux calculations that are contained in the Final Technical Memorandum for Monitoring of the 903 Pad/Ryan's Pit Plume Because of the relatively lower plume flux in the eastern contaminant pathway, it was felt that a downgradient well would adequately monitor this area of the plume Page 28 of the document states that up to seven boring per well site will be advanced to bedrock in search of colluvial groundwater. This seems more like a minimum number that would be needed in order to delineate the subsurface pathway sufficiently to have confidence in what is described as a complex and unpredictable flow regime earlier in the document. In addition, groundwater samples should be collected from as many borings as possible so that a decision can be made after the transect is completed regarding which of these should be sent to a lab for analysis. Response Additional language will be put in the SAP to allow for additional geoprobe holes (past the seven stated in the text) at the discretion of the field geologist. The language in the SAP regarding the sampling of the geoprobe borings seems adequate as written to allow for sampling of multiple boreholes. This again will be at the discretion of the field geologist. Also on page 28, the surface water sampling locations are described and shown on Figure 4-2 as being upstream and downstream of probable pathway connections to the SID and Woman Cr. It would seem to make more sense to sample surface water in the area most likely to be impacted and also to sample at least twice in a year Response In the June 18, comment resolution meeting, agreement was reached that the surface water sample locations in both the SID and Woman Cr would be determined after the results of the well and Geoprobe drilling were completed. This would give a better indication of the most appropriate surface water sampling sites. It was also agreed that a surface water sample would be collected in both fall and spring periods to better quantify the potential flux to surface water. The SAP will be updated to reflect these changes. 57/57 φ